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1 Introduction

Take a finite abelian locally compact group G. From this the set of characters of this group is
the set of homomorphisms Hom(G,T), from the group to the circle group T = {z ∈ C : |z| = 1}.
This set has a special name, the Pontryagin dual, and is denoted by Ǧ. Given this set of char-
acters, to what extend can we determine the original group G? That is to say, if we know Ǧ,
can we deduce the original group G?

The answer turns out to be completely, and is a special case of this Tannaka-Krien duality.
To see how this arise we can first put a group structure on Ǧ, defined by pointwise multiplication.
We can define an isomorphism G → Ǧ, however it’s a noncanonical one. So the question now
becomes can we get a canonical isomorphism between G and some object? The answer comes
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from looking at the double duel, ˇ̌G. If we take this then a theorem of Pontryagin asserts the
following more general statement:

Theorem (Pontryagin Duality). Let G an abelian (not necessarily finite) locally compact group

G ∼= ˇ̌G

g 7→ (χ 7→ χ(g))

To this answers our question, for a finite abelian locally compact group G the group of char-
acters of G can be used to determine G itself.

What about the nonabelian case? Here we cannot use the group of characters, as two non-
isomorphic nonabelian groups may give rise to the same character table. An example of this is
for the groups D8 and Q8, which are nonisomorphic, but it is know give the same table. So now
we ask, what set of objects can give back the original group G in the nonabelian case?

We’ve seen in class how the individual entries of a matrix representation of a Lie group G
are continuous functions on G. These matrix representations generate the ring of representative
functions. Part of the Tannaka-Krien duality states that this ring of representative functions de-
fines the structure of G. Moreover this ring can define a complexification of a compact Lie group.

Tannaka-Krien Duality concerns reconstructing a compact Lie group from the algebra of
representative functions. This theorem can be stated as the rescontruction from the category of
representations of a compact Lie group, but the focus for us will be on the former.

2 Background

Let C0(G,K) be the ring of continuous functions G→ K for a field K. Throughout this project
K = R or C. From class we know that left and right translations yield actions of G on this ring,
for example the right translation is

R : G× C0(G,K)→ C0(G,K)

R(g, f)(x) = f(xg)

From here we define a representative function of a Lie group G

Definition. Let G act on C0(G,K) via this right action. An element of the ring is called a
representative function if it generates a finite dimensional G-subspace of the ring C0(G,K)

Proposition. The representative functions form a K-subalgebra of C0(G,K), denoted F(G,K)

Proof. Take two matrix representatives g 7→ (fij(g)) and g 7→ (rmn(g)). Then the direct sum
and tensor products of these representative functions yield that the sum and product of fij and
rmn are also representative functions. Hence this gives the structure of a K-subalgebra.

A theorem of Peter and Weyl shows that F(G,K) is in fact dense inside C0(G,K)
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3 Tannaka-Krien Duality

For this section we take the field K to be R. As stated above Tannaka-Krien demonstrated that
if we know F(G,R) then we can reconstructed the compact Lie group G back from it. We do
this specifically by looking at all R-algebra homomorphisms from the algebra F(G,R) to R and
show that this set is in fact isomorphic to the compact Lie group G. Let GR be this set.

Each g ∈ G yields a map in GR via evaluation on the representative function. i.e.

eg : F(G,R)→ R f 7→ f(g)

Thus we get a map i : G → GR which sends g 7→ eg. This is the map that we will eventually
show is an isomorphism of compact Lie groups. To get there we proceed in stages: First showing
that GR is a group, then we’ll define a topology on it to make it a topological group. Finally we
show that it’s in fact a compact Lie group.

We begin with the group properties of GR. For this we generalize to GK for any field, and
require that GK be equipped with a multiplication, identity and inverse that satisfy the usual
group axioms. First a lemma:

Lemma. The K-algebra homomorphism

t : F(G,K)⊗K F(H,K)→ F(G×H,K)

Which sends
(u⊗ v) 7→ ((g, h) 7→ u(g)v(h))

Is an isomorphism

Proof. We show that this map is a bijection. To show surjectivity let f ∈ F(G×H,K) be given,
and S ⊂ F(H,K) be generated by the functions

h 7→ f(g, h)

As this space is finite dimensional there is a basis e1, ..., en such that there are elemetns h1, ..., hn ∈
H for which ei(hj) = δij. Write

f(g, h) =
∑
i

ui(g)ei(h)

Then we have that ui(g) = f(g, hi), so ui ∈ F(G,K)

To show injectivity we again have there is a basis e1, ..., en such that there are elemetns
h1, ..., hn ∈ H for which ei(hj) = δij. Let f ∈ F(G,K)⊗F(H,K) be such that f ∈ ker(t). Then
we can write we can find a basis as above, for which

f =
∑
i

ui ⊗ ei
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and each ui ∈ F(G,K). Then

ui(g) =
∑
i

ui(g)ei(hj) = 0

Hence f = 0.

3.1 A special algebraic structure

We want to use F(G,K) as a kind of model for the Lie group G. To do this we have to translate
statements and axioms of groups into those of algebras. We begin with group multiplication,
which induces a homomorphism

F(G,K)→ F(G×G,K) f 7→ ((g, h) 7→ f(gh))

From here we get a K-algebra homomorphism

d : F(G,K)→ F(G×G,K) ∼= F(G,K)⊗F(G,K)

Which is called comultiplication. We also get an induced K-algebra homomorphism from the
inverse map g 7→ g−1 denoted c which works as follows:

c : F(G,K)→ F(G,K) c(f)(g) 7→ f(g−1)

Much like the induced multiplication map was called comultiplication, we call c the coinverse.
Finally we have a counit

ε : F(G,K)→ K

As a little aside recall we can define a K-algebra as a triple (A,m, i) where m, i are the multi-
plication and inverse maps defined as follows:

m : A⊗ A→ A i : K → A

The ’co’-prefix refers to the fact that we reverse the arrows in the standard diagrams. The
following are a translation of the axioms of a group.

� The coassociativity of d satisfies

(d⊗ id) ◦ d = (id⊗ d) ◦ d

So the following diagram commutes

F(G,K) F(G,K)⊗F(G,K)

F(G,K)⊗F(G,K) F(G,K)⊗F(G,K)⊗F(G,K)

d

d id⊗d

d⊗id
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� The counit satisfies
(ε⊗ id) ◦ d = id = (id⊗ ε) ◦ d

So the following diagram commutes

F(G,K) F(G,K)⊗F(G,K)

F(G,K)⊗F(G,K) K ⊗F(G,K) ∼= F(G,K) ∼= K ⊗F(G,K)

d

d
id

id⊗ε

ε⊗id

� The coinverse satisfies
m ◦ (c⊗ id) ◦ d = i ◦ ε

Where m, i are the maps above. In a commutative diagram this is:

F(G,K)⊗F(G,K) F(G,K) F(G,K)⊗F(G,K)

F(G,K)⊗F(G,K) F(G,K) F(G,K)⊗F(G,K)

m
m

id⊗c

d

d

i◦ε c⊗id

The algebra F(G,K) along with d, c and ε are what is known as a Hopf algebra.

3.2 Group Structure

All this to say that we use the above to define a group multiplication on GK via a composition.
Let s, t ∈ GK then s · t is defined as follows

s · t : F(G,K) F(G,K)⊗K F(G,K) K ⊗K K ∼= Kd s⊗t

This makesGK into a group as associativity follows from coassociativity as follows: Let s1, s2, s3 ∈
GK , then

(s1s2)s3 = [(s1 ⊗ s2) ◦ d⊗ s3] ◦ d
= (s1 ⊗ s2 ⊗ s3) ◦ (d⊗ id) ◦ d
= (s1 ⊗ s2 ⊗ s3) ◦ (id⊗ d) ◦ d
= (s1 ⊗ ((s2 ⊗ s3) ◦ d)) ◦ d
= (s1 ⊗ (s2s3)) ◦ d
= s1(s2s3)
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The properties of ε make it a unit, and the map s · c is the inverse to s. To see this we use the
properties of the coinverse:

sc · s = m(sc⊗ s)d
= m(s⊗ s)(c⊗ id)d

= sm(c⊗ id)d

= siε

= ε

3.3 Properties of the map i

Proposition. i : G→ GK is an injective homomorphism

Proof. If f ∈ F(G,K) and d(f) =
∑

j f
′
j ⊗ f ′′j , then we have

f(gh) =
∑
j

f ′j(g)f ′′j (h)

Under the product s · t we get

(s · t)(f) =
∑
j

s(f ′j)t(f
′′
j )

So to show that i is a homomorphism we need that i(gh) = i(g)i(h):

(i(g)i(h))(f) =
∑
j

f ′j(g)f ′′j (h)

= f(gh)

= i(gh)(f)

Next, let g ∈ ker(i), then f(g) = f(1) for any f ∈ F(G,K). By a theorem of Peter and Weyl, f
separates points, thus g = 1.

Next we endow GK with a topology. To define the topology we look at the weakest possible
topology for which the evaluation maps

λf : GK → K s 7→ s(f)

Are continuous. Here weakest is defined as an alternative name for certain initial topologies:

Definition. Given topological space X, and a family of topological spaces (Yi) with maps

fi : X → Yi

Then the initial topology is the coarsest topology T on X such that

fi : (X, T )→ Yi

Is continuous
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Example. The subspace topology is the initial topology on the subspace with respect to the
inclusion map

For the case of K = R the coarsest such topology is the finite open topology.

The topology has the following important characterization: The maps from an arbitrary
topological space X

ϕ : X → GK

Are continuous if and only if the composition λfϕ is continuous for all f . Which leads us to the
following proposition:

Proposition. For a field K

i) GK is a topological group

ii) i : G→ GK is continuous

Proof. ii) This part is straightforward, i : G → GK is continuous if and only if λf i is by the
topology characterization, but λf i : g 7→ f(g) just an evaluation map, so it’s continuous.

i) We need to show that multiplication and inverses composed with λf is continuous. Let
ϕ : GK ×GK → GK denote multiplication, then

λfϕ(s, t) = λf (s · t) = (s · t)(f) =
∑
j

s(f ′j)t(f
′′
j )

So
(s, t) 7→

∑
j

s(f ′j)t(f
′′
j )

And therefore is continuous. This similarly holds for the inverse map ψ : GK → GK

λfψ(s) = λf (sc) = (sc)(f)

So it’s also continuous.

We can show directly that GR is a compact Lie group by mapping it into O(n) as a closed
subgroup. This is achieved by considering the representation r : G → GLn(K) which sends
g 7→ (rij(g)). This induces a continuous homomorphism (we’ll show this) between GK and
GLn(K) which maps s 7→ s(rij). This map will be important for us moving forward when we
talk about the complexification of compact Lie groups.

Proposition. Let rK : GK → GLn(K) be the map which sends s 7→ s(rij), then

i) rK is a continuous homomorphism which makes the following diagram commute
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G GK

GLn(K)

i

r

rK

ii) If the rij generate F(G,K) as a K-algebra, then rK is injective.

iii) If r : G ↪→ O(n), then rR(GR) ⊂ O(n) as a closed subgroup.

Proof. First we prove i. We have that

rK(S · t) = (s · t)(rij) =

(∑
k

s(rikt(rkj))

)
= rK(s)rK(t)

So it’s a homomorphism. By our topology the map rK is continuous if and only if λfrK is
continuous, but this is true as this is just the map s 7→ s(rij). The case of ii follows from
the fact that if rij generate the algebra of representative functions then any element in GK is
completely determined by where it sends rij.

Finally we come to the Tannaka-Krien Duality, or at least half of it. We’ve shown that GK

is a topological group with the map i : G→ GK be an injective homomorphism, and in the case
of GR it’s a compact Lie group. What remains is to show it’s an isomorphism.

Theorem. The map i : G→ GR is an isomorphism of Lie groups.

Proof. We begin by showing that i induces an isomorphism of the algebra of representative
functions. Take f ∈ F(G,R), then the evaluation map λf : GR → R is a representative function.
Moreover if f is a matrix coefficient of some representation r, then λf is the corresponding
coefficient of rR. The map

λ : F(G,R)→ F(GR,R)

f 7→ λf

is a homomorphism of algebras. If f ∈ F(G,R), and r ∈ GR then t · λf maps s to

λf (s · t) = (s · t)(f) =
∑
j

s(f ′j)t(f
′′
j ) =

∑
j

λf ′j(s)λf ′′j (t)

Where the last equality is by definition of λf . We’ve demonstrated that the image of λ is GR
invariant. Moreover the λf ’s separates points in GR so by the Stone-Weierstrauss theorem,
λ(F(G,R)) is dense in the sup norm topology. Define the map

i∗ : F(GR,R)→ F(G,R)
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s 7→ si

Then the composition of this map with λ is as follows: Let f ∈ F(G,R), then

i∗ ◦ λ : f 7→ (λf 7→ (λf i : g 7→ f(g)))

Meaning
[(i∗ ◦ λ)(f)](g) = [i∗(λf )](g) = (λf i)(g) = f(g)

So i∗ is a left inverse of λ, similarly one can show that i∗ is a right inverse of λ

As C0(GR,R) and C0(G,R) are the competitions of F(GR,R),F(G,R) respectively then

i∗ : C0(GR,R)→ C0(G,R)

is an isomorphism as well. Which meas that i : G→ GR is a surjective map, therefore together
with an earlier result showing this is an injective homomorphism we get the theorem.

As mentioned this is only half of the theorem. The other half is as follows:

Theorem. Let (H,m, i, d, ε, c, J) be a real commutative skewgroup. Then the map

E : H → F(HR,R)

Eaφ = φ(a)

For a ∈ H,φ ∈ HR, the set of algebra homomorphisms from H to R, is an isomorphism of Hopf
Algebras.

For a proof of this see [1]

3.4 The Category Theoretic Perspective

Before moving on we’ll very briefly talk about the more much often used Category Theory per-
spective of duality. The above Hopf algebra approach is one used in [2], [4], and [1], which are
the main sources in this project, however those with a background in Category Theory may
appreciate this approach more.

Rather than talking about reconstructing G from the algebra of representations, we wish
to reconstruct G from its category of representations Rep(G) over C. To do this we define a
forgetful functor as follows:

Definition. A forgetful functor is a functor (morphism between categories) which forgets struc-
ture.
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The forgetful functor we will use is the functor

F : Rep(G)→ Vect

Which forgets the representation structure, and only remembers the vector space structure of a
representation.

Definition. Given categories C and D, and functors F,G : C → D, a natural transformation
ϕ : F → D is a 2-morphism between the functors.

Every element g ∈ G gives rise to a natural transformation ϕ(g) by defining

ϕ(g)V : F (V )→ F (V )

To be multiplication by g whenever V is a representation. Then we can get 3 important properties
of ϕ(g):

� It preserves tensor products

ϕ(g)V⊗W = ϕ(g)V ⊗ ϕ(g)W

� It’s self conjugate with respect to complex conjugation (working over the ground field C)

� It’s the identity map on the trivial representation

Given these we can consider the set of all such natural transformations. Aut(F ), then this object
does the job of GK , and we get

Theorem (Tannaka).
G ∼= Aut(F )

Krien then expanded on Tannaka’s theorem by specifying which categories are of the form
Rep(G) as follows

Theorem (Krein). Let Π be a certain category of finite dimensional linear spaces, equipped
with tensor products and involution, which associates with an object in the category the adjoint
representation. Then the following conditions are sufficient for there to be a compact group G
for which Π is dual.

� There exists an object I ∈ Π such that I ⊗ A ∼= A for any object A ∈ Π

� Every object A ∈ Pi can be decomposed into a sum of minimal objects

� If A,B are two minimal objects, then Hom(A,B) is one-dimensional if A ∼= B, or is 0

If these conditions hold then Π = Rep(G)
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4 Complexification of Compact Lie Groups

In this section we will work with GK for K = C. We can show that not only is it a complex Lie
group, but we can add some analytic structure to make it a compact analytic group. Even more
things we can say about GC is that it’s an algebraic group, which means it’s an affine variety
with a group structure.

We begin with the definition of Complexification:

Definition. The complexification of a compact Lie group G is the pair (GC, i) where i is the
homomorphism defined above:

i : G→ GC

We’ve already seen in class some examples of various complexifications, even if we didn’t
know it.

Example. SLn(C) is the complexification of SLn(R)

Example. U(n) ⊂ GLn(C) is a complexification.

Example. SU(n) ⊂ SLn(C) is a complexification

Other examples of complexification include the following

Example. O(n) ⊂ O(n,C) and SO(n) ⊂ SO(n,C)

Proposition.
L(G)⊗R C ∼= L(GC)

To show these are indeed complexifications we need to use the following commutative diagram
that we’ve seen before

G GC

GLn(C)

i

r
rC

We can demonstrate that this rC is a holomorphic representation. First we can show a
surprising proposition:

Proposition. If r → GLnC is a representation such that rkj generate F(G,C), then rC : GC →
V (I) ⊂ GLn(C) is a bijection. Here V (I) is the affine variety of the ideal I which is the kernel
of the map

C[Xkj]→ F(G,C)

Xkj 7→ rkj
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Proof. Let r be a faithful representation such that the entries rkj of r generate F(G,C) as a
C-algebra. Then

F(G,C) ∼= CXkj/I

We can get a bijection
σ : V (I)→ GC

given by
z 7→ σz : (p+ I → p(z))

When we compose this map with rC we see

z 7→ (σz 7→ (σz(rkj)) = Xkj(z) = z)

So it’s the identity map, and the following diagram commutes

V (I) GC

GLnC GLn(C)

σ

ι rC

id

As V (I) is a closed subgroup within GLn(C) it’s a Lie subgroup.

Let P (n) be the set of positive definite Hermitian n × n matrices then multiplication of an
element in P (n) with an element in U(n) is a homeomorphism:

U(n)× P (n)→ GLn(C)

(H,P ) 7→ HP

Proposition. Let G̃ = rC(GC)

i) If we express A ∈ G̃ as the product A = HP as above, then H,P ∈ G̃ and we get a
multiplication map

(G̃ ∩ U(n))× (G̃ ∩ P (n))→ G̃

(H,P ) 7→ HP

which is a homeomorphism

ii) G̃ ∩ P (n) is homeomorphic to a Euclidean space of dimension dim G̃ ∩ U(n)

iii) G̃ ∩ U(n) is a maximal compact subgroup of G̃
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Proof. A full proof is found in [2]. We prove parts ii and iii
For ii we show that the map X 7→ exp(iX) is a homeomorphism between the Lie algebra of
G̃ ∩ U(n) and G̃ ∩ P (n). Let X ∈ L(G̃ ∩ U(n)), then exp(tX) ∈ G̃ ∩ U(n) for all real t, then
writing G̃ as the variety V (I) we know that any polynomial in I has exp(tX) as a zero for t ∈ R.
As such the analytic function t 7→ p(exp(itX)) vanishes, and so exp(itX) ∈ G̃. As the Lie
algebra of G̃ ∩ U(n) lies in the Lie algebra of U(n) the matrix itX is Hermitian, and therefore
exp(itX) ∈ P (n). Hence the Lie algebra of G̃ is the direct sum of the subspaces L = L(G̃∩U(n))
and iL. As the exp map above is the restriction of the homeomorphism X 7→ exp(iX) from the
set of skew Hermitian n× n matrices to P (n) we get the desired result.

For iii we see that G̃∩U(n) is a closed subgroup of the compact group U(n), thus it’s compact.
Assume for contradiction that there is another compact subgroup K which is maximal. In this
case it would contain an element of G̃ ∩ P (n) other than the identity matrix, this can be see by
recalling that we have a homeomorphism from i to G̃. But by ii by dimension considerations
this cannot happen.

We return to the following proposition

Proposition.
L(G)⊗R C ∼= L(GC)

Proof. We have that L(G̃) = L(G̃ ∩ U(n)) ⊕ iL(G̃ ∩ U(n)). As rR(GR) = G̃ ∩ U(n) then it’s
isomorphic to G via the discussion in the Tannaka-Krien section. As such L(G̃ ∩ U(n)) ∼= L(G)
as Lie algebras, and we get

L(G)⊗R C ∼= L⊗R C ∼= L⊕ iL ∼= L(GC)

Which preserves Lie brackets.

Proposition. Given a representation r → GLn(C) there is a unique holomorphic representation
rC : GC → GLn(C) such that rC ◦ i = r

Proof. Recall that we have rC(s) = (s(rkj)), then if we have

F(G,C) = C[a1, ..., ad] ∼= C[X1, ..., XD]/I

We know that GC maps bijectively onto V (I) via rC, and as such each entry rkj is an algebraic
function, and so

rC : V (I) ⊂ Cd → GLn(C) ⊂ Cm2

is a holomorphic map, because it’s algebraic.

Recall that G̃ ∼= G̃∩U(n)×G̃∩P (n). If we’re given the values of a holomorphic representation
on G̃∩U(n) then for any element in G̃∩P (n) of the form exp(iX) we can determine the values
of that representation on exp(tX) for all t ∈ R.
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[1] José M. Gracia-Bond́ıa, Joseph C. Várilly, Héctor Figueroa. Elements of Noncommutative
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